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Abstract. The Method of Matched Asymptotic Expansion of Singular Integrals (MAESI) is used to expand the
Biot-Savart law in terms of different parameters. This method is first used to find, in terms of the small distance
r to a line vortex, the first orders of the known expansion of the potential flow induced by this line vortex. This
method is also used to easily compare two equations of motion of a slender vortex filament: the one obtained
in an ad-hoc way by a cut-off line-integral technique and the other derived from the Navier-Stokes equations by
Callegari and Ting. Finally, this method is used to give the inner expansion of the flow induced by a slender vortex
in terms of its slenderness ε. This is the first inner expansion up to order one in terms of ε of the Biot-Savart law
for a slender vortex. An application of this inner expansion is then given to find the induced velocity of a family
of non-circular vortex rings with axisymmetric axial-core variation. In order to understand the time-evolution of
these initial conditions to the Navier-Stokes equations, a short time scale is introduced. A quasi-hyperbolic system
that describes the leading-order dynamics of the axisymmetric axial core variation on a curved slender vortex
filament is finally extracted from the Navier-Stokes equations.

Key words: Biot-Savart law, matched asymptotic expansions, singular integrals, vortex filament, axial core varia-
tion.

1. Introduction

An integral with a small parameter may become singular if this parameter is set to zero. The
method of Matched Asymptotic Expansion of Singular Integrals (MAESI) [1, pp. 98–104],
[2, pp. 341–349] is a well established method used to obtain the expansion of such integrals
in terms of a small parameter. In an incompressible inviscid or viscous fluid the Biot-Savart
law is an integral equation that relates the velocity field to that for the vorticity. In analytical
studies of slender vortex filaments this integral often becomes singular in terms of some small
parameter. For example, the velocity v induced by a line vortex C of circulation � is

v(x) = �

4π

∫
C

t(a′) × (
x − X(a′)

)
|x − X(a′)|3 da′, (1)

where × is the cross-product, t is a tangent vector to the line and X = X(a) is a function
which denotes a point on this curve as a function of arclength a. This expression of v is a
singular integral in terms of the distance r to the line. Its expansion in terms of r is given by
several authors [3], [4, pp. 33–38] in the form

v(r) = �

2πr
eϕ + �

4π
K log

L

r
b + Qf + O(r), (2)



298 D. Margerit and J.-P. Brancher

where K is the local curvature of the line, b the binormal vector and eϕ the orthoradial vector in
a normal plan to the filament (Figure 1). The length L and the finite part Qf of the self-induced
velocity are not often given, but can be found in Callegari and Ting [5].

In this paper we use the MAESI method to expand the Biot-Savart law in terms of different
parameters. This method is first used in Section 2 to find, in terms of the small distance r to
a line vortex, the first orders of the expansion of the potential flow (1) induced by this line.
With this method the derivation of this known expansion becomes straightforward. So this
gives a new interesting derivation of this expansion and is an alternative to the technique of
the osculating circle initially used by Widnall et al. [6] and used by Moore and Saffman [7,
4]. As this method has rarely been used in the field of vortex dynamics and will be used in a
more complex situation in Section 4, its successive steps are fully given in Section 2 to show
how it works. The expansion is obtained up to order O(r) by Fukumoto and Miyazaki [8]. For
the first time all global integral parts are explicitly given.

This method is also used in Section 3 to easily compare two equations of motion of a
slender vortex filament, namely the one obtained in an ad-hoc way by a cut-off line integral
technique [9, 10] and the other derived from the Navier-Stokes equations by Callegari and Ting
[5]. This comparison gives the cut-off length as a function of the inner structure parameters
Cv and Cw defined by Callegari and Ting.

Finally, the method is used in Section 4 to give the inner expansion of the flow induced
by a slender vortex in terms of its slenderness ε. This is the first inner expansion up to O(1)
in terms of ε of the Biot-Savart law for a slender vortex. The successive steps of this more
complex use of the MAESI method are not given, because this method has previously been
described in Section 2 for the line vortex.

An application of this inner expansion of the Biot-Savart law is then given in Section 5
to find the induced velocity of a family of non-circular vortex rings with axisymmetric axial-
core variation. These vortex rings with core variation are interesting initial conditions to the
Navier-Stokes equations.

Finally, in order to understand the time-evolution of these initial conditions, a short time
scale is introduced in Section 6. This time is in-between the time of the evolution of a non-
axisymmetric core and the time of motion of a curved vortex. In this Section 6 a quasi-
hyperbolic system, describing the leading-order dynamics of axisymmetric axial core vari-
ation on curved slender vortex filament, is finally extracted from the Navier-Stokes equations.
This is of interest when compared to systems obtained in an ad-hoc way such as the one
proposed by Lundgren and Ashurst [11].

2. The potential flow induced by a line vortex near this line

The closed line vortex C of circulation � and length S is described parametrically by use of
a function X = X(s) which denotes a point on the curve as a function of the parameter s

with s ∈ [−π, π [. At each point of this curve the Frenet vector basis (t,n,b) exists with the
tangent, normal, and binormal vectors (Figure 1), respectively. Here and throughout this paper
the differentiation ∂f/∂x of a function f with respect to its variable x is denoted by fx . The
variable σ (s) = |Xs| is introduced and is equal to 1 if s is an arclength denoted by a. As we
are interested in finding the velocity field near the line C, we introduce a local curvilinear
coordinate system M(r, ϕ, s) and the curvilinear vector basis (er , eϕ, t) valid near this line.
This system is defined in the following manner: if P(s) is the projection on C of a point M
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near the curve, then PM is in the plane (n,b) and thus polar coordinates (r, ϕ) can be used in
this plane with the associated polar vectors (er , eϕ). The induced velocity is then given by

v(r, ϕ, a) = 1

4π

∫
C

t(a′) × (
x − X(a′)

)
|x − X(a′)|3 da′, (3)

where x = X(a) + rer (ϕ, a). Here all lengths are non-dimensionalized by a characteristic
length L of the same order as the inverse of the local curvature K and the velocity field by
�/L. The expansion of v in terms of r is of interest because it is used in the asymptotic
derivation of the leading-order equation of motion of a slender vortex filament [5] in order
to perform the asymptotic matching between the outer region of the slender filament and the
inner region of the core.

This expansion of v in terms of r was first derived with the technique of the osculating
circle by Widnall et al. [6] and then this technique was also used by Moore and Saffman [7,
4]. The MAESI method is straightforward and gives a new interesting derivation. In order to
show how it works, and as this method has rarely been used in the field of vortex dynamics, we
found it interesting to quickly describe its successive steps in this section for readers who may
not know of this method. It is also easier to give a description of this method in this simple
case of a line vortex than in the more advanced case of a slender vortex filament as we use it
in Section 4. So this gives a useful introduction to this following section. As it will be fully
described in the following, this method consists in splitting the integral into two parts. In an
outer region outside a neighbourhood of the point P(a) the integrand is expanded in terms of
r with a∗ = a′ − a held fixed and then integrated. In an inner region in a neighbourhood of
P(a) the stretched inner variable ā = a∗/r is introduced. The obtained integrand is expanded
in terms of r with the stretched inner variable held fixed and then integrated. The last step is
the asymptotic matching which consists in adding these two integrated expansions.

First, in order to move the singularity from a to 0, the change of variable a∗ = a′ − a is
performed and the integral (3) becomes

v(r, ϕ, a) = 1

4π

∫ +S/2

−S/2
K(r, ϕ, a, a∗)da∗, (4)

where K(r, ϕ, a, a∗) = t(a + a∗) × (x − X(a + a∗)) /|x − X(a + a∗)|3. Following the
MAESI method, the small intermediate parameter η, such that r � η � 1, is then introduced
and the integral is split into two parts v(r, ϕ, a) = Out + In, where

Out = 1

4π

∫ −η

−S/2
Kda∗ + 1

4π

∫ +S/2

η

Kda∗ and In = 1

4π

∫ η

−η

Kda∗. (5)

The stretched variable ā = a∗/r is then introduced in the inner region and gives

In = 1

4π
r

∫ η/r

−η/r

K̃dā,

where K̃(r, ϕ, a, ā) = K(r, ϕ, a, rā) has been defined.
In a first step we perform the outer expansion by finding the expansion in terms of r of the

outer part Out. In order to do so, the expansion of K in terms of r is first found to be

K = t(a + a∗) × d/ |d|3 − rer × t(a + a∗)/ |d|3
−3r

(
er (ϕ, a)·d/ |d|5) t(a + a∗) × d + O(r2),

(6)
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Figure 1. The centerline and the local co-ordinates of the vortex ring.

where d = X(a) − X(a + a∗). This expansion (6) is then integrated with respect to a∗ which
gives the sought outer expansion.

In a second step we perform the inner expansion by finding the expansion in terms of r of
the inner part In. In order to do so, the expansion of K̃ in terms of r is first found to be

rK̃ = eϕ
rg3

+ 3Kā2 cos ϕeϕ
2g5

+ Kā2b
2g3

+ r

(
ā4K2eϕ

8g5
+ 15K2ā4 cos2 ϕeϕ

8g7

)

+r

(
3ā4K2 cos ϕb

4g5
− ā2 (KT cos ϕ − Ka sin ϕ) t + ā2K2eϕ

2g3

)
+ O

(
r2

g3

)
,

(7)

where g = √
1 + ā2. Then this expansion (7) is integrated with respect to ā. All these integrals

have analytical expressions which are easily found and this gives the sought inner expansion.
There are no longer integrals in this expansion.

In a last step we perform the asymptotic matching by expanding the outer expansion in
terms of η � 1, by expanding the inner expansion in terms of η/r � 1 and by adding these
two expansions. This proceeds as follows. In order to expand the outer expansion in terms of
η � 1 and to remove its singularity in terms of η, the singular behaviour of each integrand
near a∗ = 0 of the integrals in this outer expansion are studied. For example the singular
behaviour near a∗ = 0 of the first term in Equation (6) is

t(a + a∗) × d/|d|3 = K(a)b(a)/2
∣∣a∗∣∣ + O(1),

and so we can write∫ +S/2

η

t(a + a∗) × d

|d|3 da∗ =
∫ +S/2

η

[
t(a + a∗) × d

|d|3 − K(a)b(a)
2|a∗|

]
da∗

+
∫ +S/2

η

K(a)b(a)
2|a∗| da∗.

(8)
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As the singular behaviour is now removed in the first integral at the right-hand side of Equa-
tion (8), its expansion in terms of η is then simply found by means of a Taylor expansion and
the second integral is easily integrated. When this is done for each term, we have

Out = A(a) + r(B(ϕ, a) − 3C(ϕ, a)) − 1

4π
K(a) log

2η

S
b(a)

+ r

4π

(
1

η2
− 4

S2
+ 3

4
K2 log

2η

S

)
eϕ

+ r

4π
(− sin ϕKa + cos ϕKT ) log

2η

S
t − 3

8π
rK2 cos ϕ log

2η

S
b

+O(η2) + O(ηr) + O(r2),

(9)

where T is the local torsion of the line vortex and A, B and C are given by

A(a) = 1

4π

∫ +S/2

−S/2
[ t(a + a∗) × d

|d|3 − K(a)b(a)
2|a∗| ]da∗, (10)

B(ϕ, a) = 1

4π
er (ϕ, a) ×

∫ +S/2

−S/2
[− t(a + a∗)

|d|3 − fB(a, a∗)]da∗, (11)

C(ϕ, a) = 1

4π

∫ +S/2

−S/2
[er (ϕ, a)·d

|d|5 [t(a + a∗) × d] − fC(a, a∗)]da∗, (12)

with

fB(a, a∗) = − 1

|a∗|3 [t(a) + K(a)n(a)a∗ + k
a∗2

2
],

k = Ka(a)n(a) + K(a)T (a)b(a) − 3

4
K2(a)t(a),

fC(a, a∗) = −K2(a)b(a) cos(ϕ)

4|a∗| .

The inner expansion is then easily expanded in terms of η/r � 1 and gives

4πIn = 2eϕ
r

− reϕ
η2

+ 3

4

r3

η4
eϕ + K cos ϕ

[
1 − 3

2

(
r

η

)2
]

eϕ

+K

[
−1 + log 2 + log

η

r
+ 3

4

(
r

η

)2
]

b(a)

−2r

[
−K2

8
eϕ − 3

4
K2 cos ϕb(a)

](
−4

3
+ log 2 + log

η

r

)

−r [KT cos ϕ − Ka sin ϕ]
(
−1 + log

η

r
+ log 2

)
t(a)

−rK2

(
−1 + log

η

r
+ log 2 − 3

4
cos2 ϕ

)
eϕ

+O(r2) + O

(
r5

η6

)
+ O

(
r4

η4

)
.

(13)
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Finally, the expansions (9) and (13) are added and b(a) = sin(ϕ)er + cos(ϕ)eϕ is replaced in
the order O(r). As expected, the intermediate parameter η disappears and we end up with the
following expansion of the velocity v near the line vortex

v(r → 0, ϕ, a) = 1

2πr
eϕ + K

4π
cos ϕeϕ + A + K

4π

[
log

S

r
− 1

]
b

+rI +
(

B − 3C − 1

πS2
eϕ

)
r + O(r2 log r),

(14)

where

I = 3

16

K2

π

[(
er sin 2ϕ + eϕ cos 2ϕ

) (
log

S

r
− 4

3

)]
+ 3

16

K2

π

[
1

2
eϕ cos 2ϕ + 1

18
eϕ

]

+ 1

4π
(Ka sin ϕ − KT cos ϕ)

[
log

S

r
− 1

]
t.

Fukumoto and Miyazaki [8] have already given this expansion (14), but it is for the first
time that the expressions of the terms B and C are given. A comparison between (14) and (2)
shows that L = S and that the exact value of Qf is

Qf = �K

4π

(
cos ϕeϕ − b

) + �A.

This expansion (14) can also be used to easily obtain the induced velocity of a infinite non-
closed line vortex. In order to do so, we consider that this line is composed of a central part
of length S around the point where the velocity is sought and two semi-infinite parts on both
sides of this central part to complete this line. We easily obtain the expansion of the velocity
near this open line by applying (14) to the central part of this line and by adding the induced
velocity of the two semi-infinite parts.

3. Comparison between the Callegari and Ting equation of motion and a cut-off
technique

In this section we derive a relation between the cut-off-length parameter that appears in the
cut-off line-integral technique [9, 10] and the inner structure parameters Cv and Cw defined by
Callegari and Ting [5]. Such kind of comparison between an asymptotic equation of motion
and a cut-off technique was first performed by Widnall et al. [6, 12] and then by Moore and
Saffman [7, 4]. This was left to be done with the Callegari and Ting equation of motion.

Let us recall that a slender vortex ring of circulation � is a field of vorticity which is non-
zero only in the neighbourhood of a three-dimensional curve C, called the centerline. This
curve is described parametrically by a function X = X(s, t) which denotes a point on the
curve as a function of the parameter s, with s ∈ [−π, π [, and the time t . The thickness δ of
the ring is of order l and the other length scales, for example the local curvature K or the
length S of C, are of the same order L. Since the vortex is slender, a small parameter ε � 1
is defined as the ratio l/L.

Using a careful matched asymptotic expansion in the Navier-Stokes equations, Callegari
and Ting [5] found the following equation of motion

∂X/∂t = Q + K(s, t)

4π

[− log ε + log(S) − 1+Cv(t) + Cw(t)
]

b(s, t), (15)
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where Q = A(s, t) − [A(s, t)·t(s, t)] t(s, t) with

A(s, t) = 1

4π

+π∫
−π

σ (s + s′, t)
[

t(s + s′, t) × (X(s, t) − X(s + s′, t))
|X(s, t) − X(s + s′, t)|3 − K(s, t)b(s, t)

2 |λ(s, s′, t)|
]

ds′,

and λ(s, s′, t) =
s+s ′∫
s

σ (s∗, t)ds∗. Here the velocity field is non-dimensionalized by �/L and

all lengths by L. In this Equation (15), Cv(t) and Cw(t) are known functions [5] which de-
scribe the orthoradial and axial evolution of the inner velocity in the core. Equation (15) holds
for a vortex ring with axisymmetric structure at leading order and no axial core variation at
this order.

Prior to this asymptotic derivation of the equation of motion or the ones of Widnall et al.
[6], and Moore and Saffman [7], the logarithmic singularity in terms of r which appears in
(14) had been avoided by ad-hoc de-singularization techniques. For example, with the cut-off
integral technique [9, 10] an ad-hoc cut-off of the line integral (3) gives a de-singularization
of this integral in terms of the distance r to this line and yields the equation of motion:

∂X/∂t = 1

4π

∫
I

σ (s′, t)
t(s′, t) × (

X(s, t) − X(s′, t)
)

|X(s, t) − X(s′, t)|3 ds′, (16)

where I = [0, 2π [\[s − sc, s + sc[ and sc is an unknown small parameter called the cut-off
length.

This integral (16) is singular in terms of the small parameter sc and can be expanded in
terms of this parameter. In fact, the integral in Equation (16) is the same as the integral in
Equation (5) of Out, if η is put equal to sc. So one simply obtains this expansion of (16) by
replacing η by sc in (9). The comparison between this expansion and (15) leads to

sc(s, t) = ε

2σ (s, t)
exp (1 − Cv(t) − Cw(t)) . (17)

This gives the relation between the cut-off length sc, the reduced thickness ε and the inner-
core parameters Cv(t) and Cw(t) of Callegari and Ting. So Equations (16–17) are equivalent
to Equation (15), except that, when sc of (17) is plugged into (16), the integral is singular
in terms of ε, while the integral A in (15) is not. This comparison can also be performed
for other kinds of ad-hoc de-singularization [13]. The de-singularized integrals subjected to
these ad-hoc techniques are still singular integrals in terms of their ad-hoc parameter of de-
singularization.

4. The inner expansion of the velocity field induced by a slender vortex

In this section the inner expansion of the flow induced by a slender vortex in terms of its
slenderness ε is carried out. This is the first inner expansion up to O(1) in terms of ε of the
Biot-Savart law for a slender vortex. In order to perform this expansion, we use the MAESI
method that was previously described in Section 2 for the simpler case of a curved line vortex.
The outer expansion up to O(1) in terms of ε of the Biot-Savart law for this slender vortex is
also proved to be the velocity field (3) induced by a line vortex.

As defined in the previous section, a slender vortex ring is a solenoidal field of vorticity
ω(x) which is non-zero only in the neighbourhood of a three-dimensional curve C. The flux



304 D. Margerit and J.-P. Brancher

� of vorticity in each section of the ring is a constant and the vortex ring may have an axial
velocity flux of strength m. One can distinguish an outer problem defined by the outer limit
ε → 0 with r held fixed, which describes the situation far from the centerline C and an inner
problem defined by the inner limit ε → 0 with r̄ = r/ε held fixed, which describes the
situation near this centerline. The inner expansion f inn(x, ε) of a vector field f(x, ε) is the
expansion ε → 0 of f(x, ε) in terms of r̄ = r/ε held fixed and the outer expansion f out(x, ε)
is the expansion ε → 0 of f(x, ε) with r held fixed. The velocity induced by this vortex is
given by the Biot-Savart law

v(x) = 1

4π

∫∫∫
ω(x′) × (x − x′)

|x − x′|3 dx′, (18)

which can be written in local coordinates near the centerline C

v(r, ϕ, s, t, ε) = 1

4π

∫∫∫
ε2ω(r̄ ′, ϕ′, a′, ε) × [

X + rer − (X′ + εr̄ ′e′
r )

]
∣∣X + rer − (X′ + εr̄ ′e′

r )
∣∣3 h′

3r̄
′dr̄ ′dϕ′da′, (19)

where h′
3 = (

1 − K(a′)εr̄ ′ cos(ϕ′)
)
. In this section, since the parameter ε is small, we want

to find the expansion of Equation (19) in terms of ε. Thus, for the given vorticity field ω(x) =
ω(r̄, ϕ, a, ε) = ε−2ω(0)(r̄, ϕ, a), we are seeking the following expansions

ωout = ωout(0) +ε ωout(1) +O(ε2),

vout = vout(0) +ε vout(1) +O(ε2),

vinn = ε−1 vinn(0) + vinn(1) +O(ε).

(20)

We denote the radial, circumferential and axial components of the vorticity field ω by ω1, ω2,
and ω3, respectively, i.e.,

ω = ω1er + ω2eϕ + ω3t.

The conservation law divω = 0 in the curvilinear coordinates is

(ω1rh3)r + (h3ω2)ϕ + rω3a − T rω3ϕ = 0, (21)

where T is the torsion of the centerline. The conservation of the circulation along the vortex
also gives

∫∫
ω3rdrdϕ = 1.

We first perform the outer expansion of the Biot-Savart law (19) and obtain

vout(0)(x) = 1

4π

∫∫∫
ω(0)(r̄ ′, ϕ′, a′) × (

x − X(a′)
)

|x − X(a′)|3 r̄ ′dr̄ ′dϕ′da′, (22)

where x = X(a) + rer (ϕ, a). In fact, this expression can be simplified, and to do so, let us
define

D(a) ≡
∫∫

ωrdrdϕ − t =
∫∫

(ω − ω3t) rdrdϕ =
∫∫ (

ω1er + ω2eϕ
)
rdrdϕ.

The definitions of er and eϕ

er = cos ϕn + sin ϕb, eϕ = − sin ϕn + cos ϕb,

and an integration by parts gives
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D(a) = n
∫∫

(ω1 cos ϕ − ω2 sin ϕ) rdrdϕ + b
∫∫

(ω1 sin ϕ + ω2 cos ϕ) rdrdϕ

= n
∫∫

(ω1 cos ϕ − ω2 sin ϕ) rdrdϕ + b
∫∫ (

ω1 sin ϕ − (ω2)ϕ sin ϕ
)
rdrdϕ.

For the vorticity field ω(x) = ε−2ω(0)(r̄, ϕ, a), Equation (21) gives

(ω1r̄)r̄ + (ω2)ϕ = 0, −K(a) [ω1 cos ϕ − ω2 sin ϕ] + ω3a − T (a)ω3ϕ = 0.

We use these two equations to find that

D(a) = n
K

∫∫
ω3ardrdϕ + b

∫∫
(ω1 sin ϕ + (ω1r̄)r̄ sin ϕ) rdrdϕ

= b
∫∫

(ω1 + (ω1r̄)r̄ ) sin ϕrdrdϕ = b
∫∫

(ε2ω1r̄
2)r̄ sin ϕdr̄dϕ = 0,

where we finally have used the fact that ω1r̄
2 = 0 at infinity. So D(a) = 0, i.e.

∫∫
ωrdrdϕ = t,

and Equation (22) simplifies to yield

vout(0)(r, ϕ, a) = 1

4π

∫
C

t(a′) × (
x − X(a′)

)
|x − X(a′)|3 da′. (23)

This shows that, at leading order, the outer velocity field exactly corresponds to the Biot-
Savart law applied to the Dirac delta distribution ωout(0) = δCt on the centerline C. The next
order vout(1)(r, ϕ, a) is indeed not zero and is given in Margerit [14].

We now perform the inner expansion of the Biot-Savart law (19) and to do so we first
introduce the stretched inner variable r̄ = r/ε in this integral (19) which becomes

v(r̄, ϕ, a, ε) = 1

4π

∫∫∫
ε2ω(r̄ ′, ϕ′, a′, ε) × [

X + εr̄er − (X′ + εr̄ ′e′
r )

]
∣∣X + εr̄er − (X′ + εr̄ ′e′

r )
∣∣3 h′

3r̄
′dr̄ ′dϕ′da′. (24)

This integral (24) is a singular integral in terms of the small parameter ε. In order to find
its expansion in terms of ε, we use the matched asymptotic expansion of singular integrals
method (MAESI) which has been described in Section 2 for the simpler case of a line vortex.
This method consists in splitting the integration in the axial direction a′ into two parts. In an
outer region outside a neighbourhood of the points M(r̄ ′, ϕ′, a) the integrand is expanded
in terms of ε with a∗ = a′ − a held fixed and then integrated. In an inner region in a
neighbourhood of the points M(r̄ ′, ϕ′, a) the stretched inner variable ā = a∗/ε is introduced.
The found integrand is expanded in terms of ε with the stretched inner variable held fixed and
then integrated. The last step is the asymptotic matching which consists in adding these two
integrated expansions. A straightforward calculation gives

vinn(0) = − 1

2π

∫∫
gr̄ ′dr̄ ′dϕ′, (25)

where

g = ω(0)(r̄ ′, ϕ′, a) × [
r̄ ′er (ϕ′, a) − r̄er (ϕ, a)

]
/k2,

k2 = r̄2 + r̄ ′2 − 2r̄ r̄ ′ cos(ϕ − ϕ′).

At first order we have
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Figure 2. The domain of non-zero vorticity.

vinn(1) = A + K

4π
[log

S

ε
− 1]b − 1

4π

∫∫
ω(0)

a (r̄ ′, ϕ′, a) × t(a) log
1

k2
r̄ ′dr̄ ′dϕ′

−K(a)

8π

∫∫
ω(0)(r̄ ′, ϕ′, a) × n(a) log

1

k2
r̄ ′dr̄ ′dϕ′ − K(a)r̄ cos(ϕ)

4π

∫∫
gr̄ ′dr̄ ′dϕ′

−T (a)r̄

2π

∫∫
ω(0)(r̄ ′, ϕ′, a) × t(a)

k2
sin(ϕ − ϕ′)r̄ ′2dr̄ ′dϕ′ + K(a)

4π

∫∫
g cos ϕ′r̄ ′2dr̄ ′dϕ′,

(26)

where A is given by (10). These two terms (25) and (26) give the velocity field near and within
the vortex ring of vorticity ω = ε−2ω(0). If the vorticity has only a tangential component, the
term (25) of order 1/ε is the two-dimensional Biot-Savart law. This term (25) of order 1/ε and
the term of order log ε in (26) were initially found by Levi-Civita [15–17]. The term of order
1 in (26) was given on the centerline r̄ = 0 for an axisymmetric vorticity by Klein and Knio
[18]. The expansion vinn(r̄ → ∞, ϕ, a, ε) can be found with the help of the above expansion
of vinn. The matching law states that the substitution r̄ = r/ε in the limit vinn(r̄ → ∞, ϕ, a, ε)

gives the limit vout(r → 0, ϕ, a), i.e. expression (14). That has been effectively checked up
to order O(r) by use of the expression of vinn(2) obtained with the help of a computer-algebra
system (Maple).

5. The inner expansion of the Biot-Savart law applied to a family of slender vortices
with axial core variation

In this section, the previous expansion (25–26) of the Biot-Savart law is used to obtain the
inner expansion of the velocity field for the following family of slender vortex rings with axial
core variation (Figure 2), namely

ω = 1

ε2

[
1

πr̄2
0 (a)

t + ε
r̄ ′

0(a)

πr̄3
0 (a)

r̄

h3
er + g(a, r̄)

h3
eϕ

]
H

(
1 − r̄

r̄0(a)

)
, (27)

where r̄0(a) is the core radius of a slender vortex ring of the general curved centerline X(a);
r̄ ′

0(a) is the axial derivative dr̄0(a)/da, H is the Heaviside function, and g(a, r̄) is an arbitrary
function. We constructed this family (27) of vortex rings with axial variation as an exact solu-
tion of the conservation law divω = 0 – which can be checked with the help of Equation (21)
– and of the normal condition ω ·N = 0 on the interface r̄ = r̄0(a), where N is the normal to
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this interface which is proportional to er − r̄ ′
0/h3t. In the following we will consider vortex

rings without circumferential component (g(a, r̄) = 0) of the vorticity field.
The leading-order outer expansion of the induced velocity is the velocity (23) induced by

a line vortex on the centerline X(a). In order to analyse the velocity field induced in the inner
region, the relative velocity V is defined by v = v(r̄ = 0, a) + V, where v(r̄ = 0, a) is the
velocity field on the centerline. We denote the radial, circumferential and axial components
of the relative velocity field V by u, v,w, respectively, i.e., V = uer + veϕ + wt. The inner
expansion of V is taken to be of the form Vinn = ε−1Vinn(0)+Vinn(1)+. . . . The straightforward
use of the inner expansion of the Biot-Savart law (25–26) gives the inner expansion of the
induced velocity

Vinn(0) =




r̄∗

2πr̄0
eϕ if r̄∗ < 1,

1

2πr̄∗r̄0
eϕ if r̄∗ > 1,

(28)

Vinn(1) =




−r̄∗2 K

16π

[
3 sin ϕer + cos ϕeϕ

]
if r̄∗ < 1,

− K

16π

([
− 1

r̄∗2
+ 4 + 4 log r̄∗

]
sin ϕer

+
[

1

r̄∗2
+ 4 log r̄∗

]
cos ϕeϕ

) if r̄∗ > 1,

(29)

and

v(r̄ = 0, a) = A + K

4π

[
log

S

εr̄0

]
b, (30)

where r̄∗ = r̄/r̄0 and the global integral A is given by (10). In order to obtain this result (28–
30), we have used the expressions of the following integrals given by Gradshteyn [19, pp. 409,
pp. 621–622]∫ 2π

0

−1 + a cos x

(1 − 2a cos x + a2)
dx =

{ −2π if a < 1,
0 if a > 1,

∫ 2π

0
log(1 − 2a cos x + a2)dx =

{
0 if a < 1,
2π log a2 if a > 1,

∫ 2π

0

cos nx

(1 − 2a cos x + a2)
dx =




2
πan

1 − a2
if a < 1,

2
π

an(a2 − 1)
if a > 1,

∫ 2π

0

sin nx sin x

(1 − 2a cos x + a2)
dx =

{
πan−1 if a < 1,
π

an+1
if a > 1,

∫ 2π

0

−1 + a cos x

(1 − 2a cos x + a2)
cos xdx =

{ −πa if a < 1,
π

a
if a > 1.
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The velocity up to order 1 is given in the inner region by (28–30) and in the outer region by
(23). The axial derivative r̄ ′

0 of the core radius and the local torsion T of the centerline do not
appear in this inner expansion of the velocity field up to this order. In order to check our result,
we apply the curl in local coordinates to the obtained velocity field (28–30). The vorticity we
derived agrees with the two first orders of the vorticity (27). The next order of the vorticity
field depends on the order O(ε) velocity field. The velocity (30) on the centerline depends only
of the axial coordinates a and does not affect these two first orders of the vorticity field. We
checked also that the two first orders of the continuity equation are satisfied. The velocity (30)
does not affect these two first orders of the continuity equation. To check the velocity (30) on
the centerline, we use the matching law and compare the behaviour of the order O(1) velocity
field (28–30) at infinity with the one of the outer velocity field near the line at order O(1) in
terms of r given by (14). This comparison confirms the expression (30) of the velocity field on
the centerline. If the centerline is a circle, the global integral A is A = K log(8/2π)b/(4π),
as one can deduce from a comparison between the dimensionless velocity of a circular vor-
tex ring K

[
log[8S/(2πε)] + Cv(t) − 1 + Cw(t)

]
/(4π) and the equation of motion (15) of

Callegari and Ting.
As in Callegari and Ting [5] a stream function ψ(1) with

u(1) = 1

r̄
ψ(1)

ϕ and v(1) = −ψ
(1)
r̄ + r̄v(0)K cos(ϕ)

describes the order-one velocity. This stream function is found from (28–29) and is in the form
ψ(1) = ψ̃11 cos(ϕ) with

ψ̃11 =




3r̄0K

16π
r̄∗3 if r̄∗ < 1,

r̄0K

16π

[
− 1

r̄∗ + 4r̄∗ (
1 + log r̄∗)] if r̄∗ > 1,

(31)

and r̄∗ = r̄/r̄0. The streamlines and the velocity field associated with this stream function ψ(1)

are displayed in Figure 3. This figure gives a geometrical description of the matching law and
of the binormal component of the velocity on the centerline.

The family of vorticity fields (27) and its induced velocity (28–30) give an example of a
three-dimensional slender vortex ring with axial core variation that may be an initial condition
to Navier-Stokes equations. We may raise the question of the time evolution of this core
variation on the vortex ring and of the motion of its centerline. Even when r̄0 is a constant,
the velocity (30) of the centerline does not correspond to the single-time-scale asymptotic
solution (15) found by Callegari and Ting [5]. In this single-time analysis the parameters Cv

and Cw in Equation (15) are Cv = 3/4 − log r̄0 and Cw = 0 for a leading-order velocity (28).
The velocity on the centerline found from Equation (15) is then

v(r̄ = 0, a) = A + K

4π

[
−1

4
+ log

S

εr̄0

]
b (32)

and the stream function ψ̃11 is

ψ̃11 =




5r̄0K

16π
r̄∗3 if r̄∗ < 1,

r̄0K

16π

[
2

r̄∗ + 4r̄∗
(

3

4
+ log r̄∗

)]
if r̄∗ > 1,

(33)
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Figure 3. The streamlines and the velocity field associated with the stream function ψ(1) of Equation (31). The
circle is the interface r̄∗ = 1.

where r̄∗ = r̄/r̄0. The two first orders of vorticity are

ω = 1

ε2

[(
1

πr̄2
0

− Kr̄

πr̄2
0

cos(ϕ)ε + O(ε2)

)
t
]
H

(
1 − r̄

r̄0

)
. (34)

The difference between the order O(1/ε) tangential vorticity of the single-time-scale analysis
(34) and the one (27) of the family studied here explains the difference between the velocities
on the centerline (30) and (32). It also explains the difference (Figure 4) between the stream
functions (31) and (33). The vortex ring (27) without axial variation is an example of a three-
dimensional initial condition of the Navier-Stokes equation for which the study of the time
evolution would require a double-time-scale expansion with a normal time t and a fast time
t̄ = t/ε2 as was introduced in two dimensions by Ting and Tung [20, 21].

We can add an axial flow of strength m to this flow (28–30) by adding the following field
of velocity

v = 1

ε

[
m

πr̄2
0 (a)

t + εm
r̄ ′

0(a)

πr̄3
0 (a)

r̄

h3
er + f (a, r̄)

h3
eϕ

]
H

(
1 − r̄

r̄0(a)

)
, (35)

where f (a, r̄) is an arbitrary function. We constructed this field as an exact solution of the
continuity equation divv = 0 and of the normal condition v·N = 0 on the interface r̄ = r̄0(a)

of the vortex ring. At leading order this field (35) is a vortex sheet ω(0) = mδr̄=r̄0/r̄
2
0 eϕ . When

f (a, r̄) = 0, the first orders of this velocity field are
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Figure 4. Radial evolution of the stream function ψ̃11. The solid line is from Equation (31) and the dashed line is
from Equation (33).

Vinn(0) =




m

πr̄2
0

t if r̄∗ < 1,

0 if r̄∗ > 1,

(36)

Vinn(1) =




mr̄ ′
0(a)

πr̄2
0

r̄∗er if r̄∗ < 1,

0 if r̄∗ > 1.

(37)

If these velocities (36–37) are added to (28) and (29), this adds an axial flow of strength m to
the velocity field of the vortex ring previously studied.

6. The leading-order dynamical equations of the axisymmetric axial core variation on
a curved slender vortex

In this section we investigate the time evolution of axisymmetric axial core variation on vortex
filament in order to understand the time evolution of the initial conditions (27–30) to the



Asymptotic expansions of the Biot-Savart law for a slender vortex with core variation 311

Navier-Stokes equations. We denote the radial, circumferential and axial components of the
relative velocity field V by u, v,w, i.e., V = uer +veϕ+wt. In a single-time-scale analysis for
a vortex ring with axial core variation the inner expansions of the relative velocity components
are

uinn = u(1)(r̄, ϕ, s, t) + . . . ,

vinn = ε−1v(0)(r̄, s, t) + v(1)(r̄, ϕ, s, t) + . . . ,

winn = ε−1w(0)(r̄, s, t) + w(1)(r̄, ϕ, s, t) + . . . .

Unfortunately, for the initial conditions (27–30) one cannot just use the single-time-scale
analysis for a vortex ring with axial core variation as given by Klein and Ting [22], because
the symmetric part of Vinn(1) in Equation (29) does not satisfy the following compatibility
conditions of the single-time-scale analysis for a vortex ring with axial core variation given
by Ting and Klein [5, 22]

(r̄u(1)
c )r̄ + r̄

σ (0)
w(0)

s = 0,

(
r̄v(0)

)
r̄

r̄
u(1)
c + w(0)

σ (0)
v(0)
s = 0,

w
(0)
r̄ u(1)

c + p(0)
s

σ (0)
+ w(0)

σ (0)
w(0)

s = 0, p(0) = −
∫ ∞

r̄

v(0)2

r̄
dr̄ ,

(38)

where u(1)
c is the axisymmetric part of the radial velocity at order unity and p(0) is the leading-

order pressure. Equations (28–29) give v(0) �= 0, w(0) = 0, and u(1)
c = 0. The third equation

of (38) is then not satisfied, as the axial derivative p(0)
s of the pressure is not equal to zero.

The vortex ring (27) without axial variation is the only one that satisfies these compatibility
conditions.

In fact, the time of evolution for these initial conditions (27–30) and for non-short axial
core variation on a filament is a time τ = t/ε that is in-between the time t̄ = t/ε2 of evolution
for a non-axisymmetric core and the time t of motion for a curved vortex. This regime is not
the same as the one considered by Ting and Klein [23, pp. 181–185] , who studied axial core
variation on an open vortex filament by means of a single-time-scale t and double-axial-scale
(s, ξ = εs) analysis. In the double-time-scale analysis (t, τ = t/ε) for an open filament
the long-time t behaviour of a core variation perturbation that evolves at short time τ = t/ε

is to reach the far distance ξ = εs of the Ting and Klein [23] regime. In the following the
leading-order equations of this double-time-scale analysis are given.

With this double-time-scale analysis the inner expansions of the relative velocity compo-
nents are

uinn = u(1)(r̄, ϕ, s, t, τ ) + . . . ,

vinn = ε−1v(0)(r̄, s, t, τ ) + v(1)(r̄, ϕ, s, t, τ ) + . . . ,

winn = ε−1w(0)(r̄, s, t, τ ) + w(1)(r̄, ϕ, s, t, τ ) + . . . .

For this small time the derivatives with the small-time τ appear in the compatibility conditions
(38) of the single-time-scale analysis and these Equations become the following equations of
evolution for the axisymmetric part of the relative velocity field

(r̄u(1)
c )r̄ + r̄

σ (0)
w(0)

s = 0,
∂v(0)

∂τ
+

(
r̄v(0)

)
r̄

r̄
u(1)
c + w(0)

σ (0)
v(0)
s = 0,

∂w(0)

∂τ
+ w

(0)
r̄ u(1)

c + p(0)
s

σ (0)
+ w(0)

σ (0)
w(0)

s = 0, p(0) = −
∫ ∞

r̄

v(0)2

r̄
dr̄ .

(39)
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When σ = 1, the parameter on the centerline is an arclength and these equations are the
‘long-wave scaling’ shallow-water equations derived from studies of vortex breakdown of a
straight filament [24]. Similar shallow-water equations have been deduced in an ad-hoc way
by Lundgren and Ashurts [11].

Let us define the meridional stream function ψ , with

u(1)
c = − 1

σ (0)r̄
ψs, w(0) = 1

r̄
ψr̄ ,

and introduce the following transformation [24]

G = r̄v(0), y = r̄2.

In these new variables the system (39) becomes

∂G

∂τ
− 2

σ (0)
ψsGy + 2

σ (0)
ψyGs = 0,

D2 ∂ψ

∂τ
+ 2

σ (0)
ψyD

2ψs + 2

yσ (0)
GGs − 2

σ (0)
yψs

[
y−1D2ψ

]
y

= 0,

(40)

where D2ψ = rw(0)
r = 4yψyy . The axisymmetric parts of the velocity fields (28–29) and

(36–37) give initial conditions to these equations of evolution on the small-time τ and their
numerical integration is currently under investigation.

7. Conclusion

We have used the method of Matched Asymptotic Expansion of Singular Integrals (MAESI)
to obtain the inner expansion of the Biot-Savart law for a slender vortex with core variation.
This expansion has been carried out in terms of the thickness of the filament and is the first
inner expansion up to O(1) of the Biot-Savart law for slender vortex filaments.

The MAESI method has been previously applied to the simpler case of the known expan-
sion, in terms of the small-distance r to a line vortex, of the potential flow (3) induced by this
line. This derivation is an alternative to the technique of the osculating circle initially used by
Widnall et al. The successive steps of this derivation have been displayed so as to describe
how this method works. This also provides an example of the expansion of a singular integral
in terms of a small parameter and this example may be useful for other expansions of the
same kind in fluid dynamics (e.g. expansion of ad-hoc de-singularized integrals) but also in
other fields (e.g. electromagnetics). The relation between the cut-off length introduced in the
cut-off line-integral technique and the inner-core parameters Cv and Cw defined by Callegari
and Ting has also been given.

The obtained inner expansion of the Biot-Savart law was finally used to give the inner
expansion of the velocity field induced by a family of curved vortex rings with axial-core
variation. This expansion was given up to order one in terms of the thickness ε of these
vortices. This family of vorticity fields gives an interesting example of initial conditions for the
Navier-Stokes equations. In order to understand the time-evolution of these initial conditions,
a short-time scale was introduced. This time is in-between the time of the evolution of a non-
axisymmetric core and the time of motion of a curved vortex. A quasi-hyperbolic system that
describes the leading-order dynamics of axisymmetric axial-core variation on a curved slender
vortex filament was finally extracted from the Navier-Stokes equations and is of interest for
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comparison with systems obtained in an ad-hoc way such as the one proposed by Lundgren
and Ashurst.
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